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1 Introduction

During the past decade, the study of quantum computing and quantum in-
formation processing has generated wide spread interest among physicists
from areas ranging from atomic physics, optics, to various branches of con-
densed matter physics [1, 2]. The key thrust behind the rush toward a working
quantum computer (QC) was a quantum algorithm designed by a computer
scientist, Peter Shor from AT&T, that can factor large numbers exponentially
faster than any available classical algorithms [3]. This exponential speedup
is due to the intrinsic parallelism in the superposition principle and unitary
evolution of quantum mechanics, thus it requires a computer that is made
up of quantum mechanical parts (qubits), whose evolution is governed by
quantum mechanics. Since the invention of Shor’s factoring algorithm, it has
also been proved that error correction can be done to a quantum system [4],
so that a practical QC does not have to be forever perfect to be useful. After
these two important developments, the field of quantum computation has
seen an explosive growth.

Many physical systems have been proposed as candidates for qubits in
a QC. Prominent examples include trapped ions [5, 6], photons or atoms
in cavities [7, 8], nuclear spins in a liquid NMR system [9], electron spin in
semiconductor quantum dots [10, 11], donor electron or nuclear spins in semi-
conductors [12, 13, 14], structures consisting of superconducting Josephson
junctions [15], and many more. The experimental demonstration of quantum
coherence and maneuverability of these physical systems can be characterized
as very fruitful in some cases, such as trapped ions [16] and liquid state NMR
[17], to preliminary in many other cases, such as most solid state schemes.

Although experimental progress in many solid state schemes has been slow
to come, they are still often considered promising in the long term because of
their perceived scalability. After all, the present computer technology is based
on semiconductor integrated circuits with ever smaller feature size. However,
it is still to be demonstrated whether and how the available semiconductor
technology can help scale up an architecture that is quantum mechanically
coherent.

Here we first present a brief overview of the current theoretical and exper-
imental progresses in the study of quantum dot-based quantum computing
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schemes. We then focus on the spin-based varieties, which are generally re-
garded as the most scalable because of the relatively long coherence times of
electron and nuclear spins.

2 General Features of the Quantum Dot Quantum

Computing Schemes

2.1 Classification of the QC Schemes

Many proposals have been made to use quantum dot (QD) and various elec-
tron and nuclear degrees of freedom to process quantum information. Crudely
these proposals can be classified as charge-based and spin-based (both elec-
tron and nuclear spins). We comment on a few of the charged-based proposals
below and then discuss in more detail the particular spin-based schemes on
which we focus in this lecture.

One of the earliest charge-based proposal is to use the lowest two orbital
energy levels of a single electron QD [18]. When an external electric field is
applied to the QD, the ground and first excited states would acquire opposite
electric dipole moments (the so-called quantum-confined Stark effect [19]).
With the interdot tunneling completely suppressed, the inter-qubit coupling
is then dominated by dipolar interaction. It creates energy shifts in the energy
levels of one QD depending on the state of its neighboring dot, thus provides
the physical basis for conditional two-qubit operations [18, 20]. Resonant
optical pulses can then be used to implement the conditional excitations.

Several charge-based proposals have since been suggested with more con-
crete architectures and more detailed physical descriptions. Examples include
those using pillars of vertically stacked QDs [21], and chains of horizontal
double dot [22, 23]. Similar dipole-interaction-based proposals were also put
forward in other physical systems such as trapped neutral atoms [24]. Al-
ternatively, there have also been suggestions using cavity modes (instead of
dipole interaction) to couple electronic orbital states [25]. Indeed, the promi-
nent charge-based qubit is the Cooper pair box proposal in superconductor,
where the charged and uncharged state of a small superconducting grain form
the basis of a qubit [15, 26, 27, 28, 29]. The semiconductor analogue of the
coherent charge oscillation experiment [27] has just recently been done [30],
although with much shorter coherent time compared to the superconducting
counterpart. The great experimental successes in Cooper pair boxes have also
prompted searches for other systems that share some common features with
Cooper pair boxes. Examples include such exotic systems like quantum Hall
bilayers [31, 32].

All the charge-based schemes mentioned so far use singly charged semicon-
ductor QDs. The associated strong Coulomb interaction provide a convenient
means for fast qubit manipulation, but can also lead to fast decoherence. One
way to alleviate this problem is to use neutral excitations such as excitons
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as qubits, where there is the added benefit that excitons can be precisely
controlled optically. Indeed, uncharged QDs have been proposed as possible
candidates for quantum information processing [33, 34, 35, 36, 37], and many
experiments have been done to demonstrate exciton coherence and control in
a single QD [38, 39, 40, 41, 42, 43]. Here single excitons are optically excited
in individual QDs and can be coherently manipulated optically. The presence
and absence of an exciton in a QD provide the two states of a qubit. Again,
entanglement between different qubits is based on Coulomb renormalization
of the energy levels. The exciton-based QC proposals clearly illustrate the
dichotomy faced by all QC architectures: excitons are neutral, therefore are
more insulated from their environment and decohere more slowly than the
single charge based schemes. However, the charge neutrality also strongly re-
duces the interaction between spatially separated excitons, thus rendering it
more difficult to perform entangling operations.

In the following we will focus on spin-based QD QC architectures. A
fermionic spin, more specifically a spin-1/2, being a quantum two-level sys-
tem in a finite magnetic field, is a natural qubit with its spin-up and spin-
down states. For example, the most successful experimental demonstration
of quantum control and entanglement is in a trapped ion system using two
hyperfine split nuclear spin levels for qubit [5]. It was discussed in the mid-
1990s that Ising interaction between electron spins in solids can produce the
desired entanglement for a QC [44]. Here, the specific common thread among
the schemes we will concentrate on is that in all of them direct electron
exchange coupling plays a crucial role. There are certainly proposals where
electron spin interaction takes other forms (such as cavity photon mediated
[11], free electron mediated [13, 45], optical RKKY interaction [46], and dipole
coupling [47]), and there have been a tremendous amount of research done
on the optical characterization of electron and nuclear spins [48, 49, 50, 51].
Nevertheless, we are going to be mostly focused on the electrical control of
spins and their interaction.

2.2 GaAs Quantum Dot QC Architecture

One of the earliest proposed solid state QC schemes uses the spin of a single
electron trapped in a GaAs QD as its qubit (see [52, 10, 53, 54, 55] and refer-
ences therein, and Fig. 1). Local magnetic fields are used to manipulate single
spins, in the sense that it creates a local Zeeman splitting, which can then
be accessed by a resonant RF pulse. Inter-dot exchange interaction, which is
a purely spin interaction in the form JS1 · S2 but of electrostatic origin, is
used to couple neighboring spins and introduce two-qubit entanglement. A
single trapped electron in a GaAs QD ground orbital state means very low
spin-orbit coupling as the electrons occupy states at the bottom of the GaAs
conduction band and have essentially S type states [55]. Thus the electron
spin coherence time should be even longer than in the bulk, where electron
spin decoherence is already very slow.
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Fig. 1. A schematic of a QD QC.

Some of the critical issues regarding GaAs QD QC are trapping a single
electron in a gated QD, producing a local electron Zeeman splitting that is
different from all its neighbors (so that resonant single spin rotations can
be performed), creating and controlling a finite exchange coupling between
electrons in neighboring QDs, and last but not least, measuring the single
electron spins with high fidelity.

2.3 Si Quantum Dot QC Architecture

The GaAs QD QC architecture we discussed above can be relatively easily
extended to a Si/SiGe material system [56]. Here the electrons are confined
in the pure (but strained) silicon region (instead of SiGe alloys), while the
confinement is produced by the SiGe alloys along the growth direction and
surface gates in the in-plane directions (Fig. 1). Compared to GaAs, electron
spin decoherence due to hyperfine coupling (as we will discuss in Section 3) in
such a system can be suppressed by using purified 28Si as the host material.
On the other hand, the more complicated band structure of silicon and the
less well-controlled interface may pose problems to the coherent manipulation
of a quantum device, which needs to be further studied.

2.4 Si Donor Nuclear Spin QC Architecture

The QDs underlying the previous two QC schemes are essentially artificial
atoms, where electron confinement is provided by the barrier materials and
the external electrostatic potential from the metallic gates on the surface
of the devices. A naturally occurring alternative is the weakly bound donor
states. Take an example of a monovalent donor, where one extra proton is
present at the donor nuclear site while an extra donor electron is loosely
bound to this proton. Now the donor location becomes the tag for the bound
electron spin or the resident nuclear spin, and identical copies of such donors
can be easily made in a semiconductor.
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One of the most intriguing and influential QC schemes is the donor nuclear
spin based Si QC [12], as is shown in Fig. 2(a). Here spin-1/2 31P donor
nuclei are qubits, while donor electrons together with external gates provide
single-qubit (using external magnetic field) and two-qubit operations (using
hyperfine and electron exchange interactions). Specifically, the single donor
nuclear spin splitting is given by [12]

h̄ωA = 2gnµnB + 2A+
2A2

µBB
, (1)

where gn is the nuclear spin g-factor (1.13 for 31P [12]), µn is the nuclear
magneton,A is the strength of the hyperfine coupling between the 31P nucleus
and the donor electron spin, and B is the applied magnetic field. It’s clear
that by changing A one can effectively change the nuclear spin splitting,
thus allow resonant manipulations of individual nuclear spins. If the donor
electrons of two nearby donors are allowed to overlap, the interaction part
of the spin Hamiltonian for the two electrons and the two nuclei include
electron-nuclear hyperfine coupling and electron-electron exchange coupling
[12]:

H = HZeeman +Hint

= HZeeman +A1S1 · I1 + A2S2 · I2 + JS1 · S2 , (2)

where S1 and S2 represent the two electron spins, I1 and I2 represent the
two nuclear spins, A1 and A2 are the hyperfine coupling strength at the
two donor sites, and J is the exchange coupling strength between the two
donor electrons, which is determined by the overlap of the donor electron
wavefunctions. The lowest order perturbation calculation (assuming A1 =
A2 = A and J is much smaller than the electron Zeeman splitting) results
in an effective exchange coupling between the two nuclei and the coupling
strength is

Jnn =
4A2J

µBB(µBB − 2J)
. (3)

Now the two donor electrons are essentially shuttles between different nuclear
spin qubits and are controlled by external gate voltages. The final measure-
ment is done by first transferring nuclear spin information into electron spins
using hyperfine interaction, then converting electron spin information into
charge states such as charge locations [57]. A significant advantage of silicon
is that its most abundant isotope 28Si is spinless, thus providing a “quiet”
environment for the donor nuclear spin qubits. In addition, Si also has smaller
intrinsic spin-orbit coupling than other popular semiconductors such as GaAs.
In general, nuclear spins have very long coherence times because they do not
strongly couple with their environment, and are thus good candidates for
qubits. However, this isolation from the environment also brings with it the
baggage that individual nuclear spins are difficult to control and measure.
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This is why donor electrons play a crucial role in the Si QC scheme. On top
of the good material properties Si possesses, there is another potential advan-
tage of a QC based on Si: the prospect of using the vast resources available
from the Si-based semiconductor chip industry. In Bruce Kane’s own words,
it is always advantageous if one can have the eight hundred pound gorilla on
his/her side.
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Fig. 2. Schematics of (a) a Si donor nuclear spin QC and (b) a Si donor electron
spin QC.

2.5 Si Donor Electron Spin QC Architecture

A direct Si donor electron analogue to the GaAs QD QC scheme has also been
proposed [14]. In this scheme the 31P donor electron spins are employed as
qubits (Fig. 2(b)). The phosphorus donors are located in a Si layer sandwiched
in between SiGe alloy layers. By moving a donor electron into alloy regions of
a different g-factor, its Zeeman splitting can be tuned significantly, which then
allows selective single-qubit operations using resonant RF pulses. Similarly,
different alloy regions also present different electron effective masses, which
affect the size of the donor electron wavefunction sensitively. Such property
can then be used to tune the exchange coupling between two bound donor
electrons, and two-qubit operations are again provided by the direct exchange
interaction between neighboring donor electrons. This all-electron proposal
has much faster gate operations compared to the nuclear-electron hybrid
scheme mentioned above. However, the alloy environment has to be more
thoroughly studied for such a QC scheme to be considered more practical.
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3 Electron Spin Coherence in Semiconductors

To use spins as qubit for a QC, they should possess very long coherence
time. Here “long” is in the sense that within a characteristic spin coherence
time a large number of operations can be performed. The criteria for the
large number is determined by the requirements of successfully performing
quantum error correction, which lead to numbers in the range of 104 to 106

[1]. For example, if a gate operation on an electron spin can be performed in
1 ns, then its coherence time needs to be longer than 10 µs.

Spin coherence (whether it is electron spin or nuclear spin) is regularly
described in terms of a longitudinal (or spin-lattice) relaxation time T1 and
a spin-spin relaxation time T2 [58]. These descriptions originate from the
magnetic resonance studies of these spin species going back to the 1940s
[59, 60]. T1 generally describes processes that involve energy transfer between
a spin and its environment, while T2 describes everything that disrupts the
quantum coherence of a spin, thus is generally much shorter than T1.

Notice that spin-flip processes cause both population relaxation and de-
phasing, contributing to both rates 1/T1 and 1/T2. However, in a real physical
system the longitudinal and transverse directions are often affected differently
by the environment. Indeed, there exist pure dephasing processes that affect
only T2 but not T1. One example is the colliding molecules (which can be
described as a pseudospin system, with spin up and down referring to the
two relevant internal levels of the molecules) in an optically active gaseous
medium, where molecules constantly undergo collisions with each other, some
of them inelastic, but most of them elastic. During an inelastic collision, elec-
trons in the molecules undergo transitions that correspond roughly to spin
relaxation (or complete loss of the system as an electron gets excited out of
the two optically active levels). During an elastic collision, the single molecule
energy spectrum changes due to the presence of the other molecule nearby.
This shift in energy levels (particularly the two active levels) is dependent
on the details of the collision, and is thus a random variable, which we refer
to as δω(t). Including this frequency shift, the differential equation for the
off-diagonal density matrix element ρ↑↓ (representing the coherence between
the up and down levels) becomes [61]

ρ̇↑↓(t) = −i[ω + δω(t)]ρ↑↓. (4)

Note that in the first order approximation the population in the up level,
ρ↑↑, is not affected by this level splitting fluctuation since its equation of
motion is independent of the energy difference ω [61] (in other words, the
fluctuation in the level splitting does not lead to population relaxation). δω(t)
is a random variable that averages to zero, 〈δω(t)〉 = 0. Within the Markovian
approximation, the random fluctuation in energy level splitting of the two
level system causes a pure dephasing effect:

〈ρ↑↓(t)〉 = 〈ρ↑↓(0)〉e−iωte−γpht. (5)
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This pure dephasing only contributes to T2 of a spin or pseudospin system,
but not to T1.

Another well-known example of pure dephasing is the dipolar spin-spin
interaction between nuclear spins in a solid, which produces effective local
magnetic field fluctuations for each nuclear spin and hence contributes essen-
tially only to T2 (the corresponding effect on T1 is extremely small). What is
important for dephasing is that some change in the state of the environment
must occur due to its interaction with the system—dephasing does not require
an inelastic scattering process in the system, although all inelastic scatterings
necessarily produce dephasing. In fact, as mentioned before, T2 in the context
of electron spin resonance (ESR) and nuclear magnetic resonance (NMR) is
often called the spin-spin relaxation time because the most important intrin-
sic effect contributing to T2 is the dipolar interaction among various spins
in the system, which, while transferring energy among the spins themselves,
does not lead to overall energy relaxation from the total spin system (and
does not change the total magnetic moment). By contrast, spin-lattice inter-
actions lead to energy relaxation (via spin-flip processes) from the spin system
to the lattice, and thus contribute to T−1

1
, the spin-lattice relaxation rate. In

short, T2 sets the time scale for the spin system to achieve equilibrium within
itself whereas T1 sets the time scale for the global thermodynamic equilib-
rium between the spin system and the lattice. For the purpose of quantum
computing, it is obvious that T2 is the directly relevant time scale, because
we need to keep all the spins completely quantum coherent.

As we mentioned before, it is imperative that T2 for an electron spin in
a single QD is a factor of 104 or so greater than the typical gating time in a
QD QC [2] in order for the quantum computing process to be fault tolerant.
For B = 1 T, the Zeeman splitting in a GaAs QD is about 0.03 meV, which
yields 100 ps for the precession time of one spin, which can be used as the
one qubit gate (the two qubit gate time is shorter, h̄/J ∼ 50 ps for J ∼ 0.1
meV). Therefore for quantum error correction to be performed reliably, T2

for the trapped electron spin needs to be on the µs time scale, which may
very well be the case at low enough temperatures in a single QD. We note
that the existing experimental estimates of free electron spin relaxation time
T2 in GaAs (for T = 1–4 K) is around 10–100 ns [69], which is obviously a
lower bound.

3.1 Spin Decoherence Channels in Semiconductors

In doped semiconductors there are three major spin relaxation mechanisms:
Elliot-Yafet (EY), Dyakonov-Perel’ (DP), and Bir-Aronov-Pikus (BAP) mech-
anisms, for conduction electrons [48, 62] at not-too-low temperatures. The
origin of the EY mechanism is spin-orbit coupling. Spin-orbit coupling does
not lead to spin relaxation by itself, but it mixes the electron orbital and spin
degrees of freedom. When combined with another scattering mechanism, such
as phonon emission/absorption and impurity scattering, electron spin-flip can
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occur (spin-flip now means the dominant spin component in the Bloch state
changes). In the DP mechanism, the splitting of spin up and down conduction
bands due to lack of inversion symmetry (as in III-V semiconductors such as
GaAs, which has the zinc-blende lattice structure) acts as an effective mo-
mentum dependent magnetic field B(k). An electron with momentum k and
spin S precesses in this effective field B(k) and loses its spin memory. As
this electron is scattered into a different k state, its spin will start to precess
around the new effective field. This constant change of effective magnetic field
actually reduces the electron spin relaxation, so that the spin relaxation time
is inversely proportional to the momentum relaxation time in this mechanism
(cf motional narrowing). Lastly, the BAP mechanism is given by the exchange
interaction between electrons and holes. Electronic spins move in an effective
field produced by the hole spins, and relaxation takes place when hole spins
change in a rate much faster than the electron precession frequency.

For the purpose of QD quantum computing, electrons are individually
confined in the QDs or around donor nuclei. This quantization of the elec-
tron orbital motion should significantly reduce the cross-section of the spin
relaxation channels discussed above. However, if the confined electrons are
close to a heterogeneous interface, the associated electric field would increase
the strength of spin-orbit coupling for such electrons (for example, in GaAs,
whose lattice lacks inversion symmetry). Overall, spin-orbit coupling is rel-
atively weak in the regime for quantum computing and is less important
than at higher temperatures and electron densities. Furthermore, without
scattering off phonons or impurities, spin-orbit coupling can actually be use-
ful rather than harmful to quantum computing [63, 64]. At this limit, other
sources of electron spin decoherence, such as electron-nuclear spin coupling,
can be more significant, as we will discuss in the next section.

Phonon-assisted spin flip rates due to spin-orbit coupling in a single elec-
tron GaAs QD has been calculated [65]. As discussed above, due to wave
function localization, the spin orbit relaxation mechanisms for a free electron
(EY and DP) are strongly suppressed in a QD, giving a long spin flip time:
T1 ≈ 1 ms for B = 1 T and T = 0 K. It was further noticed that spin
relaxation is dominated by the EY mechanism, which yields T1 ∝ B−5 for
transitions between Zeeman sublevels in a one electron QD.

These calculations are consistent with recent transport measurements of
spin relaxation in both vertical and horizontal QDs [66, 67, 68]. Pulses of
current were injected into a QD coupled to leads in the Coulomb Blockade
regime, where the decay rate from excited states can be measured by an-
alyzing the currents generated by the pulses. The results indicate that, for
T = 150 mK and B = 0 − 2 T, spin relaxation times (T1) are longer than at
least a few µs in a many-electron QD (less than 50 electrons), and are longer
than 50 µs in single electron dots. This is encouraging from the perspective
of the spin-based solid state QC architectures where spin relaxation times of
µs or longer are most likely necessary for large scale QC operation.
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It is important to keep in mind that T2 is a more directly relevant decoher-
ence time for quantum computing. Therefore experimental determination of
electron and nuclear spin T2 in semiconductor nanostructures are crucial, but
are still to be performed. ESR combined with transport techniques in prin-
ciple could be used to probe T2 in a QD in the Coulomb Blockade regime,
just like transport techniques were used to detect ESR in two dimensional
electron systems [69]. For example, it was proposed [70] that by applying an
AC pump field to a single electron QD subjected to a magnetic field, the
stationary current through this QD will exhibit a peak as a function of the
pump frequency, whose width will yield a lower bound on T2.

3.2 Spectral Diffusion for Electron Spins

Spin-orbit coupling does not lead to pure dephasing effect, so that one should
expect to have T1 = 2T2 in materials where spin-orbit coupling in combina-
tion with phonon/impurity scattering dominates the spin relaxation, such
as high quality GaAs at higher electron density. When the strength of spin-
orbit coupling or the cross-section of scattering is reduced, other possible spin
decoherence channels have to be considered.

In GaAs, all nuclear isotopes (69Ga, 71Ga, and 75As) have spin 3/2, and
there is finite hyperfine interaction between conduction electrons and all these
isotopes [71]. The hyperfine interaction is essentially an on-site dipole-dipole
interaction between electron and nuclear spins and is ∝ S · I, which includes
terms that lead to simultaneous spin flip-flop of both electron and nuclear
spins. At a finite magnetic field, the Zeeman splittings of electron and nuclear
spins are different by three orders of magnitude, thus energy conservation re-
quires another process to be involved in the transition, therefore reducing the
cross-section of such type of processes [72]. However, in the hyperfine inter-
action there is also a term that is proportional to SzIz , where the nuclear
spins basically produce an effective magnetic field for the electron (assuming
one electron trapped in a QD in our situation). If the nuclear spins are all
frozen in their respective states, they would simply produce a random but
fixed field, which would result in the so-called inhomogeneous broadening for
the electron and the effect can be accounted for by calibration and spin echo
techniques [59, 60]. If the nuclear spins are dynamically coupled (through
dipolar coupling, for example), though, the trapped electron would be in a
magnetic field that fluctuates both spatially and temporally. This fluctuating
field makes the electron Zeeman splitting a random variable that undergoes
the so-called spectral diffusion, which results in pure dephasing for the elec-
tron spin [73]. The calculated results for GaAs QDs are in the order of tens
of µs.

Theoretically, it can be envisioned that if all the nuclear spins are polar-
ized, the corresponding electron spin spectral diffusion and dephasing can be
suppressed [54]. However, 100% polarized nuclear spins would create a sig-
nificant effective magnetic field, which can have its own negative side effect.
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Furthermore, the creation of this high degree of polarization is also nontriv-
ial. In other words, ingenious approaches need to be devised to deal with the
nuclear spins in a GaAs QD, and we may not have seen the optimal approach
just yet.

Spectral diffusion can occur in donor electrons in Si as well, when the
host Si material is not purified: Naturally occurring Si contains more than
95% of 28Si and 30Si, which have no nuclear spin, and nearly 5% 29Si, which
has nuclear spin 1/2. For a confined donor electron (at a phosphorus site,
for example), which has a Bohr radius about 30 nm, there can be a lot of
nuclear spin-1/2s (more than 104 of them within a sphere of radius of 30 nm)
with finite hyperfine coupling to the electron, and thus can produce spectral
diffusion in this electron as discussed above [73]. Fortunately, in Si there is a
way to reduce the effect from the nuclear spins of 29Si: isotopic purification.
If a complete purification can be achieved, the nuclear spin induced electron
spin spectral diffusion can be completely suppressed [73].

4 Spin Manipulations and Exchange

4.1 Spin Hamiltonian in a GaAs Double Quantum Dot: Coulomb

Interaction and Pauli Principle

One of the key issues in the spin-based QD QC involving exchange coupling
in a coupled QD is to accurately describe the electron interaction in terms
of a spin Hamiltonian such as a Heisenberg exchange Hamiltonian with ap-
propriate correction terms. Ideally, for small QDs at low temperatures, the
electron orbital degrees of freedom are frozen, so that the only states two
electrons can possibly occupy in a double dot are the ground spin singlet
and triplet states, whose splitting is the exchange splitting J . However, it
is important to clarify whether the ground state manifold is well separated
from the excited states, and whether the exchange splitting J in the ground
state manifold is sufficiently large to support a practical QC.

The Hamiltonian for two electrons in an electrostatic confinement pro-
duced by surface gates and growth direction barriers can be written as

H =
∑

i=1,2

[

1

2m∗

(

p +
e

c
A(ri)

)2

+ V (ri)

]

+
e2

ǫr12
+

∑

i=1,2

g∗µBB(ri) · Si . (6)

This is an effective mass Hamiltonian where the underlying Bloch function
at Γ point (the bottom of the GaAs conduction band) is already factored
out. Notice that none of the spin-dependent terms except Zeeman coupling
are included in this Hamiltonian. In essence, electrostatic interaction is much
stronger than direct magnetic interactions such as magnetic dipole interac-
tion. Neglected interactions include electron spin-orbit interaction (which will
be discussed later on in this subsection), electron-electron magnetic dipole
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interaction, electron-nuclear spin contact hyperfine interaction (discussed in
the previous section on electron spin spectral diffusion), electron-nuclear spin
dipole interaction, and other higher order interactions. In fact, in arriving at
the effective mass Hamiltonian (6), small spin-mixing terms inversely propor-
tional to the conduction band gap are also neglected [74].

Here we have separated the two-electron-interaction related terms of the
Hamiltonian from those that involves interactions between either or both
of the electrons and the surrounding environments that include the crystal
lattice (in terms of phonons), the nuclear spins of the ions, and other electrons
present in the system. The effects of these interactions are categorized as
decoherence, in the sense that as soon as electron spin coherence passes into
these channels, the chance of a revival of the coherence is vanishingly small.

The theoretical calculation of electron spin exchange in a double dot was
first done using the Heitler-London approach, in which the electron orbital
states are limited to the ground states in the two single QDs that form the
double dot [54], and double occupied single dot states are excluded. The
effects of the lowest two double-occupied states (where both electrons are in
the same dot) are included in the so-called Hund-Mulliken calculation [54].
Both calculations indicated that the exchange constant can be sizable in a
GaAs QD system.

More accurate calculations of the exchange coupling and the overall spec-
trum of the two QD-confined electrons can be performed with larger basis of
single dot states. For example, we performed a molecular orbital calculation
to further clarify the properties of the exchange splitting in a GaAs horizontal
double QD by including the excited P orbital states of the two QDs [55]. The
inclusion of the anisotropic P orbitals provides more flexibility to electron
wavefunction deformation and bonding, thus leads to more faithful descrip-
tion of the exchange splitting of the two-electron ground states. After all,
molecular bonding is strongly affected by electron distribution in space, while
the system we considered is essentially an effective two-dimensional hydrogen
molecule. The system we considered is formed from two-dimensional electron
gas by surface gate depletion (the so-called horizontal or lateral QDs). The
growth direction confinement (due to AlGaAs alloys) is so strong that the
excitation energy scale along that direction is much higher than the horizon-
tal direction and excitation along that direction is neglected (thus the name
horizontal or lateral QD). One important advantage of the horizontally cou-
pled QDs is that the inter-dot coupling can be easily tuned with surface gate
potential adjustments. Our numerical results showed that the inclusion of the
P orbitals indeed affect the exchange coupling quite significantly, generally
causing an increase about 20% compared to the Hund-Mulliken calculation
[55] (see Figs. 3 and 4). The size of the QDs we considered is quite small (in
the order of 40 to 50 nm in diameter), somewhat smaller than the state of
the art experimental value of about 100 nm. The increase in size invariably



Spin-Based Quantum Dot Quantum Computing 13

leads to smaller on-site Coulomb repulsion, smaller single particle excitation
energy, and generally smaller exchange coupling.
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Fig. 3. Two-electron energy spectrum of a GaAs horizontal double QD [55] as a
function of applied perpendicular magnetic field. The ground singlet-triplet mani-
fold is well separated from the excited states. Here the inter-dot distance is 30 nm,
and the ground electron wavefunction radius is about 10 nm.
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of a GaAs horizontal double QD [55].
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The spectroscopic results for double QD [54, 55] show that exchange cou-
pling should be sufficiently strong to implement quantum computing opera-
tions, where a basic controlled-NOT operation can be built from single qubit
spin rotations and two so-called square-root-of-swap gates [10]:

UCNOT = ei π
4

σ2y ei π
4

σ1z e−i π
4

σ2z U
1

2

sw ei π
2

σ1z U
1

2

sw e−i π
4

σ2y , (7)

where σ are Pauli matrices, and Usw = exp(iπσ1 · σ2). For example, an
exchange splitting of 0.1 meV corresponds to a swap gate with duration as
short as 100 ps. Compared to the electron spin decoherence time that might
be as long as milliseconds, such gating time is sufficiently short for quantum
error correction codes to work properly.

By including only the lowest spin singlet and triplet states, we have im-
plicitly assumed that the higher energy two-electron states can be neglected.
Such an assumption is based on the electron states being manipulated adia-
batically. On the other hand, the gate operations are limited in duration by
the electron spin decoherence time. It is thus imperative to determine what
the adiabatic requirement is in the present architecture. Such calculation was
carried out within the Hund-Mulliken model by assuming a particular tem-
poral shape of the exchange splitting J in a double QD [75]. We performed
such a calculation with calculated two-electron energy spectra and wavefunc-
tions [76]. Instead of assuming a particular temporal profile for the exchange
coupling J , we assumed a temporal variation in the inter-dot barrier height,
which is a quantity that can be directly tuned by external voltages applied
to the surface gates. Our results show that errors due to non-adiabaticity
decreases rapidly as the gate operations become longer, and the requirement
for adiabatic operation is not overbearing on the spin-based GaAs QD QC
[76].

The calculations on the energy spectra and adiabatic manipulation thus
justify the use of Heisenberg spin exchange Hamiltonian to describe the low
energy dynamics in a two-electron double QD (whose effective mass Hamilto-
nian is given by Eq. 6) and the related two-qubit operations in a spin-based
QD QC. In these calculations spin-orbit coupling has been neglected because
of their small magnitude for the conduction electrons in bulk GaAs (near the
bottom of the conduction band the electron wavefunction is mostly formed
from the atomic S orbitals). However, the horizontal QDs are made from
two-dimensional electron gas confined in heterostructures or quantum wells,
where the sharp surfaces and asymmetry lead to strong Rashba type spin-
orbit coupling (even for symmetric quantum wells, this spin-orbit coupling
does not vanish because of the lack of inversion symmetry in GaAs), which
in turn leads to finite anisotropic exchange in the spin interaction [77] in
the form of h · (S1 × S2) plus higher order corrections. Here h is a vector
determined by spin-orbit interaction. The inclusion of these terms does not
take away the capability of QDs to perform quantum logic operations (in-
deed, there has been a proposal to use the anisotropic exchange coupling



Spin-Based Quantum Dot Quantum Computing 15

to perform quantum logic operations [63, 64]). Nevertheless, they do add
more complexity to the aesthetically simple and beautiful isotropic Heisen-
berg exchange coupling. Fortunately, it has been proved that by carefully
choosing the temporal profile of the inter-dot coupling (basically maintaining
time reversal symmetry), it is possible to largely eliminate the effects of the
anisotropic exchange due to the spin-orbit interaction [78].

Even when the two-electron interaction in a double dot can be charac-
terized by the Heisenberg spin exchange Hamiltonian, inhomogeneity in the
single spin environment can still cause problems in the two-qubit quantum
logic operations. For example, we showed that inhomogeneous Zeeman cou-
pling leads to incomplete swap operations [79]. This means that swap cannot
be accomplished by a single pulse of exchange gate anymore. Instead, sev-
eral pulses (at least 3) have to be used for large inhomogeneity [80], while
smaller inhomogeneities such as those due to trapped charges nearby can be
and have to be corrected [79]. Interestingly, inhomogeneous Zeeman coupling
can also be utilized for the purpose of qubit encoding [81], which leads to
all-exchange logical operations (eliminating the need for local magnetic field
and/or g-factor engineering) [82] that originate from the concept of decoher-
ence free subspace [83].

To relax the requirement of spin-based QD quantum computation, multi-
electron QDs have also been studied as candidates for qubits [84]. For in-
stance, we performed a configuration interaction calculation for a double dot
with six electrons (three per dot) to explore whether the low-energy dynam-
ics is still entirely dominated by spin dynamics. Our results showed that
the ground state complex is well separated from the higher energy excited
states (Fig. 5) at relatively high magnetic fields, and the splitting between
the lowest-energy singlet and triplet states can be sizable as well (Fig. 6).
However, our results also showed that orbital level degeneracy can lead to
the participation of multiple states in the low energy dynamics at zero or
low magnetic fields, therefore causing serious complexity and difficulty in
spin exchange. To solve this problem, external means such magnetic field or
quantum dot deformation has to be applied to lift the orbital degeneracy so
that the electron cloud in each QD can again be described by an effective
spin-1/2 entity. Another theoretical study has also clearly demonstrated a
variety of difficulties in the control of gate operations when one attempts to
use multi-electron QDs as qubits [85].

In using a tunable exchange interaction for quantum gates, one needs
to control the magnitude and duration of the interaction precisely. Since ex-
change interaction depends sensitively on the wavefunction overlap, its precise
control is of critical importance. One suggestion on how a good control can be
achieved is to control the way the wavefunction overlap is tuned by altering
the geometry of the QD designs and is called a pseudo-digital approach [86].
As the experimental study of QD QC pushes toward two and more qubits
and qubit manipulations, such considerations are directly relevant to the de-
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Fig. 5. Six-electron energy spectrum of a GaAs horizontal double QD [84].
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Fig. 6. Energy splitting of the two lowest energy states of a six-electron GaAs
horizontal double dot [84].

signs of next generation architectures and ultimately the scale-up of any of
the QD-based QC schemes.

4.2 Implications of Si Conduction Band Structure to Electron

Exchange

As we mentioned before, Si possesses a variety of nice material properties
(small spin-orbit coupling, spinless isotopes, etc.) for the purpose of quantum
computing, so that it is clearly one of the favored host materials for a solid-
state QC. However, Si does have one complexity that GaAs, the other popular
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semiconductor material, does not have: The Silicon conduction band has six
minima close to the X points of the silicon First Brillouin Zone [87], so that
donor electron wavefunctions have to be expanded on the basis of the six
Bloch functions at these points. It was pointed out in the context of donor
magnetic phase transition that the presence of degenerate conduction valleys
leads to valley interferences and a shift to smaller values for average electron
exchange coupling [88]. The potential problem such interference effects may
cause to a donor based Si QC was also mentioned in the original proposal
[12].

To quantitatively address this concern over donor exchange coupling in
Si, which is a crucial link for two-qubit operations in the Si QC architecture,
we have performed a series of Heitler-London type calculations of the donor
electron exchange coupling. Such a calculation is based upon the single donor
wavefunctions, which can be expressed as [87, 88, 89, 90]

ψ(r) =

6
∑

µ=1

αµFµ(r)φµ(r) =

6
∑

µ=1

αµFµ(r)uµ(r)eikµ·r , (8)

where Fµ are the so-called envelope functions while φµ(r) are the Bloch func-
tions at the bottoms of the Si conduction band [89]. |kµ| ≈ 0.85 · 2π/a is the
location of the conduction band minima and is very close to the X points.
The presence of these plane wave phase factors leads to a significantly more
complicated expression (compared to, for example, GaAs) for the electron
exchange splitting [90]:

J(R) =
∑

µ,ν

|αµ|2 |αν |2Jµν(R) cos(kµ − kν) ·R . (9)

Here J represents integrals over the envelope functions and is thus a slowly
varying function of donor positions. The key fact here is that the R-
dependence of J(R) is strongly oscillatory because of the sinusoidal factors
cos(kµ − kν) · R.

Our numerical results showed that the inter-valley interference indeed
leads to strong atomic scale oscillations in the inter-donor electron exchange
(see Figs. 7 and 8), which potentially presents a significant difficulty in the
control of two-qubit operations [89]. Uniaxial strain can be used to break
the Si lattice symmetry and partially lift the degeneracy between the valleys,
so that as few as two valleys make up the bottom of the conduction band.
Then the sum over µ in Eq. (9) is much simplified, but the sinusoidal factor
will still remain, so that care still has to be taken in controlling the donor
exchange (Figs. 9 and 10) [90]. These results have been corroborated by
another calculation that also considered higher order corrections in Coulomb
interaction energy [91]. More recently we have attempted to relax the Heitler-
London approximation to minimize the two-electron energy [92]. However, the
results showed that in the cases of donors, which have very low single particle
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potential energy near the donor nuclei, the two-electron contribution to total
energy is completely dominated by the single particle contributions, thus the
Heitler-London results based on single donor states are quite robust [92].
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Fig. 7. Donor electron exchange splitting in relaxed bulk Si. The two 31P donors
are aligned along the [100] direction [89].
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Fig. 9. Donor electron exchange splitting in Si uniaxially strained along [001]
direction (χ = −20). The two donors are approximately aligned along the [100]
direction, with one of them displaced along the [010] direction [90].
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Fig. 10. Donor electron exchange splitting in both relaxed bulk Si and Si strained
along the [001] direction. The two donors are both in the (001), or xy, plane. We
consider a situation where one of the donors is located in any of the possible lattice
positions between two concentric circles of radii 90 Å and 180 Å with the other
donor positioned at the center of the circles. The data points correspond to the
exchange calculated at all relative positions considered. The solid line is J(R) for
R along the [100] direction for χ = −20 [90].
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As we mentioned before, there have also been proposals using electron
spins in Si or SiGe host materials for quantum computing. The problem with
oscillatory exchange also plagues the donor-electron-based scheme. In the
case of QDs in Si, the problem becomes more subtle. In such a system there
does not exist a strong scattering center such as a donor, so that the different
valleys in Si do not couple significantly, so that the validity of Eq. (8), with
its strongly pinned phase for each valley, becomes questionable. The valley
degeneracy is lifted by the quantum well for the QDs, but the energy splitting
is quite small [93]. More theoretical and experimental studies are needed to
further clarify this situation.

One way to avoid the potential problems associated with the control of
inter-donor exchange coupling is to move a donor electron around between
ionized nulei [94, 95]. Here nuclear spins are still the qubits, while a single

electron is used as a shuttle to physically move among nuclei to enable effec-
tive two-qubit coupling and operations. Since on-site hyperfine coupling has
been shown to be quite robust against Si bandstructure complexities [96, 97],
this approach thus maintains the long coherence time advantage of a donor
nuclear spin in Si while completely removes the requirement of inter-donor
exchange coupling. However, a potential disadvantge of such a charge-coupled
device may be associated with the charge movement and the corresponding
spin decoherence. Further analysis is still needed to clarify the physical pic-
ture here.

4.3 Single Spin Detection Schemes

Single spin detection is crucial for any spin-based QC architecture to work
properly, both in terms of quantum error correction, and in terms of read-
ing out the final results of a calculation. However, since magnetic force is
weak (compared to electrical force), and a single Bohr magneton is a very
small magnetic moment, direct measurement within a short duration (such as
using the most sensitive magnetometer available at present, a SQUID magne-
tometer) is almost impossible. However, several techniques are being actively
studied and have produced some promising progresses.

One approach to single spin detection is to first convert the electron spin
states into electron charge states, for example through spin blockade effects
[98, 99, 100, 101]. It is well established now that single electron transistors
(SET) and quantum point contacts (QPC) are extremely sensitive charge de-
tectors [102]. Thus, if one can establish a correlation between electron charge
location and spin states, a means to determine spin states can be established
by observing the current or conductance of the SET/QPC charge detector.
One shortcoming of the conventional DC-biased SETs and QPCs is that they
are relatively slow detectors, with bandwidth in the order of 10 kHz. How-
ever, an alternative approach to DC-SET has been proposed [103]. Instead
of measuring current directly, here pulsed radio-frequency field is sent into a
circuit containing an SET and the circuit response is measured. The relevant
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physical quantity in such a measurement is conductance, which can be deter-
mined without collecting a large number of electrons. The bandwidth of these
so-called Radio Frequency SETs (RF-SET) has been shown to reach above
10 MHz, so that they are very promising candidates for quantum detectors.
Now, if spin states can be efficiently converted to charge locations, single spin
detection also becomes possible. One of the early examples of such conversion
was suggested in connection with the donor in Si architecture, where the on-
site exchange splitting between a singlet and a triplet state on a double valent
donor, together with an SET charge detector, is used for spin detection [57].
A similar scheme can also be constructed for artificial QD-based structures.

Quantum measurement of hyperfine split nuclear spin levels in trapped
ion systems has been achieved using the so-called quantum jump technique, in
which an ancilla electron orbital level and light absorption/emission between
this level and the qubit levels are used to read out the quantum state of the
qubit with basically 100% efficiency. Such ancilla levels certainly also exist
for semiconductor QDs, so that similar quantum jump processes have been
suggested for single electron spin detection [47]. Concrete examples of such
a scheme have been described and simulated for an electron spin in a QD
[104, 105].

In the original proposal for QD QC in GaAs, the so-called spin valve effect
is suggested for spin measurement [10], where electron tunneling into another
QD depends on its spin orientation, in analogy to giant magnetic resistance
[106]. An alternative is to prepare a supercooled paramagnetic dot, so that
when an electron tunnel into this QD, a large ferromagnetic domain could
quickly nucleate along the incoming spin direction. This more macroscopic
magnetization can then be detected in a more traditional way [10].

Another approach toward spin measurement is a direct magnetic force
detection using the so-called magnetic resonance force microscopy (MRFM)
[107]. In MRFM a small magnet at the tip of a cantilever creates a strongly
inhomogeneous magnetic field near the surface of a sample containing para-
magnetic electron spins. When a RF field with a certain frequency is applied,
only those spins that are Zeeman split by the right amount can get into res-
onance with the external RF field, so that these spins can apply controlled
forces on the cantilever. By measuring the motion of the cantilever, one can
infer information of those electron spins that are on resonance (thus the name
MRFM).

Single spin detection is not needed for the purpose of characterizing a
single or double QD/donor system. For example, we proposed a scheme to use
resonant micro-Raman scattering to measure inter-donor exchange coupling
[108]. The polarization- and temperature-dependence of Raman scattering
provides abundant information of a two-donor system, while resonant photons
enhances the cross-section of such scattering process so that single pairs of
donors can be observable. Similarly, transport and/or optical techniques can
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be used to measure the ground exchange splitting in a double QD as well
[109].

4.4 Approaches to generate and detect electron spin

entanglement in quantum dots

Two basic ingredients of spin-based QD QC are single spin manipulation
and particularly single spin detection. These are very hard tasks and are
attracting plenty of attention from experimentalists and theorists alike. In
the meantime, traditional ensemble-averaged experiments can also be used
to demonstrate quantum coherent properties of electron spins. For example,
electron spin entanglement has never been experimentally demonstrated in
condensed matter systems in terms of measured correlations, because of the
usual presence of strong interaction and the associated difficulty in isolating
the target electrons. However, with the help of QDs and transport through
them, it is possible to generate and detect electron spin entanglement. From
the perspective of QD QC, a reliable source of spin entangled electrons is
very important to tasks such as error correction.

Many approaches for creating/detecting entanglement in solid state sys-
tems have been theoretically proposed in the literature. For example, Cooper
pairs in a superconductor are (usually) in a spin singlet (and entangled) state,
thus it is quite natural to consider extracting them with control to make up
a source of pairs of spin-entangled electrons [110, 111, 112, 113, 114, 115].
The key here is to separate the two electrons into different drain electrodes
using, for example, Coulomb blockade in quantum dots or wires. There are
many other physical systems within solid state that have electron spin entan-
gled states as part of their eigenstate spectrum and have been suggested as
sources of entangled electrons. Examples include quantum dot and quantum
wire electron singlet states in semiconductors [116, 117, 118, 119, 120]. Here
we briefly discuss our idea of using a double dot to create spin entangled
electron pairs [119].

As discussed in the previous sections, at zero or low magnetic field, the
ground state of a two-electron double dot is a spin singlet state, where the
spins of the two electrons are entangled ((| ↑↓〉−| ↓↑〉)/

√
2). However, sequen-

tial tunneling through a double dot is generally dominated by the lowest order
processes, so that the current through a double dot is generally made up of
mostly single electrons tunneling out of the entangled state. To extract pairs
of spin-entangled electrons, a relatively straightforward approach is to intro-
duce time-dependent (specifically, periodic) tunnel barriers, so that during
part of one cycle the electrons form molecular states (such as the spin singlet
state) in the double dot, while during the rest of the cycle the electrons are
emptied out into the drain electrodes. Such time-dependent manipulation of
tunnel barriers is quite well-understood for single quantum dots, and in prin-
ciple feasible for a double dot. We estimated various parameters for such a
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double dot turnstile and found that they are quite reasonable and fall within
the capability range of currently available technology.

A possible method to observe solid state electronic entanglement within
ensemble-averaged approach is to use two-electron interference in transport.
One example is to use a beam splitter [121, 119], into which pairs of entangled
electrons are injected. Although this detection scheme is not a true Bell-
type measurement, it is nonetheless an important first step as it deals with
correlations between electrons that have been extracted from their entangler
and separated.

5 Current Experimental Status

5.1 Single electron trapping in horizontal QDs

Since the invention of gated semiconductor QDs, there has been a continu-
ous trend to fabricate structures that can hold smaller and smaller number
of electrons. Single electron QD through electrical transport was achieved in
vertically contacted InGaAs QDs several years ago [122]. However, since con-
finement in a gated dot is given by an electrostatic field produced by metallic
gates that are 50 to 100 nm away, and the feature width of a metallic gate is
generally above 20 nm, horizontal QDs made from depleted two-dimensional
electron gas are generally large in size but energetically shallow. In these
QDs it is difficult to simultaneously increase depletion (to reduce number of
trapped electrons) and maintain a finite coupling to the source and drain
leads (so that transport characterization can be done). A solution to this
problem was found several years ago, when a new design with source and
drain coupling controlled by a single gate was studied [123]. The design has
since been used to create single electron QDs and two-electron double QDs
successfully [124, 125]. Furthermore, recent experiments have shown that elec-
trons trapped in such a QD have significant (and consistent with expectation)
Zeeman splitting, and that spin-flip time is extremely long in these confined
states [68].

5.2 Single spin detection

Although many theoretical proposals have been published on how to achieve
single spin detection, experimental demonstration remains a challenging and
hotly pursued goal, particularly for solid state spin-based QC architectures,
though impressive progress have been made along a variety of lines of re-
search.

Recently, QPCs have been used to successfully measure single QD prop-
erties such as QD charging and excited state spectroscopy [125, 126]. The
simpler structure of a QPC makes it an enticing alternative to an SET de-
tector, and may be easier to integrate into larger structures.
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In analogy to the quantum jump technique in trapped ion QC schemes [6],
optical transitions have been used to observe single spin states of nitrogen-
vacancy defect centers in diamond [127]. These observations clearly demon-
strated that although solid state systems general have much more complexity
compared to atomic systems, many of the techniques and concepts can be
transferred with truly fruitful consequences.

It has recently been reported that as few as two electron spins can be
reliably detected with a particular realization of the MRFM [128]. Spin dif-
fusion suppression, which is intimately related to the interaction between the
cantilever and the spin being observed, has also been characterized in the
inhomogeneous magnetic field produced by the small magnet at the end of
the cantilever of an MRFM [129].

5.3 Electron-nuclear spin interaction in QDs

As we mentioned previously, electron-nuclear spin hyperfine coupling can lead
to electron spin spectral diffusion and pure dephasing. Thus it is an important
environmental issue for electron spins, especially for QD host materials that
have a lot of nuclear spins, such as GaAs and InGaAs (the preferred materials
for gated horizontal and vertical QDs, respectively).

There have been quite extensive experimental studies of electron-nuclear
spin coupling in bulk semiconductors and more recently semiconductor het-
erostructures [48, 130, 131, 132]. Dynamical nuclear spin polarization has re-
cently been demonstrated in a spin blocked semiconductor double QD made
of Ga0.95In0.05As [109, 132, 100]. Coulomb interaction and Pauli principle
means that in a double QD two-electron singlet and triplet states are split
by the exchange interaction, so that proper voltage offset and bias between
the double dot leads to significant suppression in the tunnel current due to
occupied triplet state (thus the so-called spin blockade regime, which has
been suggested for single spin detection, a crucial component of quantum
information processing) [100]. One way to lift this blockade is to apply an
appropriate magnetic field, so that singlet-triplet spin-flip transition can be
facilitated by the electron-nuclear spin hyperfine coupling as one of the po-
larized triplet state is energetically degenerate with the singlet state [132].
This selective transition can then dynamically polarize the nuclear spins in
the double QD. Indeed, strong experimental evidences have been observed
that nuclear spins are indeed being polarized [132], though many physical
issues still have to be sorted out before a more thorough understanding of
the coupled electron-nuclear spin system can be achieved.

5.4 Fabrication of donor arrays in Si

Currently there are active experimental research efforts in attempting to fab-
ricate well-controlled 31P donor arrays in a Si crystal, and plenty of exper-
imental progress have been made [133]. Two experimental approaches are
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adopted, attacking the problem from opposite directions [134, 133]. One uses
ion implantation by bombarding 31P ions into crystalline silicon, thus it is also
called a top-down approach. The other uses MBE to grow the system layer
by layer and STM to identify donor locations, and is called the bottom-up
approach.

In the top-down approach, annealing is needed after the bombardment
to make the 31P donors substitutional so that they become shallow donors.
If they remain interstitial, they would behave as deep centers [135], which
have different electronic structures and thus are not useful for the purpose of
quantum computing within the Kane proposal. Single electron transistors are
used to monitor the presence of donors since they are very sensitive to net
charges [133]. At present the precise positioning of the donors and annealing
of the Si host lattice are being actively studied [136, 137].

In the bottom-up approach, a clean Si surface is first hydrogenated. An
STM is then used to pick off hydrogen atoms at desired locations, after which
the surface is doused with PH3 gas so that phosphorus atoms would tend to
attach to the surface at the vacancies. This way an ordered array of donors
can be fabricated with a high degree of regularity. Using this approach, it has
been shown that precise positioning of phosphorus donors into a linear array
can be achieved on a Si [001] surface [138]. More recently, the incorporation
of the donors into the bulk of Si has also been demonstrated [139]. Athough
much more experimental efforts have to be invested, and most probably more
sophisticated technologies in donor positioning and manipulation have to
be invented for this QC architecture to be fabricated with precision, recent
experimental progresses are nonetheless quite impressive and promising.

6 Summary

We have presented a brief review of the theoretical and experimental pro-
gresses related to spin-based QD QC architectures. We introduced the most
prominent proposals of QD QC, outlined the basics on how these proposals
might work, explored potential problems with the different material systems,
and finally discussed where the present experimental studies stand. We thank
US ARO, ARDA, and LPS for continued financial support to our research.
The results presented here are the products of collaborations with S. Das
Sarma, B. Koiller, D. Drew, R. de Sousa, R.B. Capaz, and fruitful discussions
with J. Fabian, I. Zǔtić, A. Kaminski, M. Friesen, R.A. Webb, Y.Z. Chen,
B.E. Kane, D. Romero, S. Tarucha, K. Ono, R. Hanson, and R. Budakian.
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